Training Workshop on Ocean Information Services for Cyclone Forecasters April 2-3, 2014

Tide Forecasting

K. Srinivas Ocean State Forecast Lab (ISG) INCOIS, Hyderabad

E-mail: srinivask@incois.gov.in

Phone: 040-23886057

040-23895017

Why forecasting of the tide is important !!

Navigation

Fishing

Recreation

Engineering

Tsunami

Storm surge

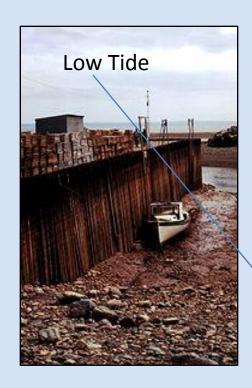
Military applications

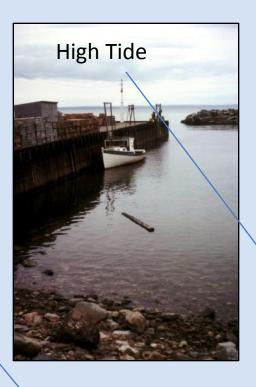
Pollution studies

Power generation

Academic

Etc.....

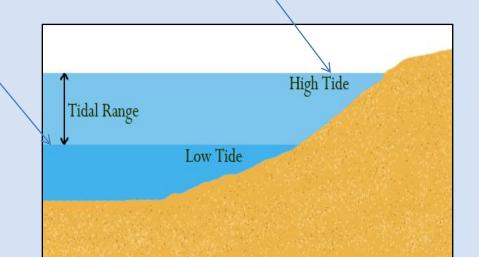

Tides are generated by astronomical phenomena and are, therefore, highly

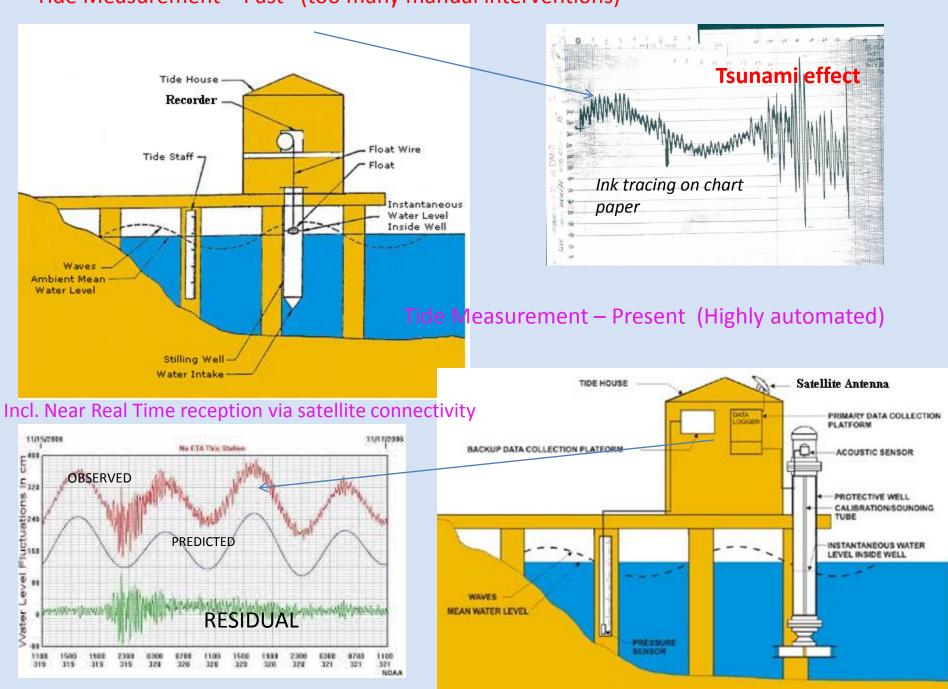

predictable.

"The tides are the heartbeat of the ocean, a pulse that can be felt all over the world"

Defant, 1958

They are very important for a proper understanding of : physics, chemistry, biology and geology of the coastal and estuarine waters




The same location in the Bay of Fundy at low and high tide.

The maximum tidal range is approximately 17m

The tidal range is the vertical difference between the low tide and the succeeding high tide.

Tide Measurement – Past (too many manual interventions)

For some studies, tide is a "corrupting" factor and hence it has to be removed to study other important signals ie NON-TIDAL SIGNALS (Meteorological residuals or Residuals)

Hydrological signals (river discharge effects)

Meteorological signals (wind influence or pressure influence)

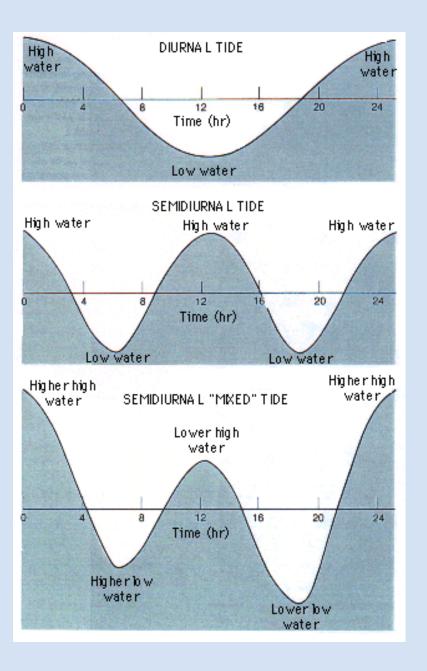
Oceanographic signals (upwelling effects)

The above three are Important for: seasonal studies as well as Climate Change studies

A typical tide curve below

Presence of tide

The most obvious indication of the presence of tide at any location (coastal or deep sea) is a characteristic, sinusoidal oscillation in the water level/ pressure records,


containing

either **two** main cycles per day (*semidiurnal tides*), **one** cycle per day (*diurnal tides*), or a **combination of the two** (*mixed tides*).

So a Total of THREE TYPES

The advantage !!

No matter how complex the tidal curve may appear, tidal oscillations can be broken down into a collection of simple sinusoids (even up to 115 in number).

BUILDING BLOCKS OF THE TIDE

The following are among the *major tidal constituents* contributing to the astronomical tide:

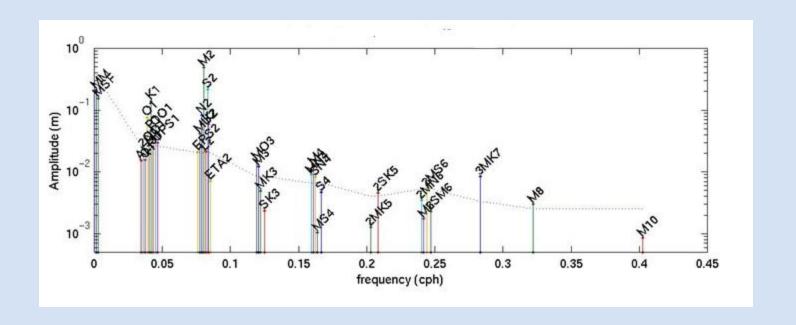
- M₂ Principal lunar semidiurnal constituent
- S₂ Principal solar semidiurnal constituent
- N₂ Larger Lunar elliptic semidiurnal constituent
- K₁ Luni-solar declinational diurnal constituent
- O₁ Lunar declinational diurnal constituent
- M₄ First overtide of M₂ constituent (speed: 2 x M₂ speed)
- M₆ Second overtide of M₂ constituent (speed: 3 x M₂ speed)
- S_4 First overtide of S_2 constituent (speed: 2 x S_2 speed)
- MS_4 A compound tide of M_2 and S_2 (speed: $M_2 + S_2$ speed)

Tidal Component	Period (solar hours)	Description	Nature
M2 S2 N2 K2 K1 O1 P1 Q1 MF MM	12.42 12.00 12.66 11.97 23.93 25.82 24.07 26.87 327.90 661.30	Principal lunar Principal solar Larger lunar elliptic Luni-solar Luni-solar diurnal Principal lunar diurnal Principal solar diurnal Larger lunar elliptic Lunar fortnightly Lunar monthly	semi-diurnal semi-diurnal semi-diurnal semi-diurnal diurnal diurnal diurnal diurnal Long term Long term
SSA M4 MS4	4383.00 6.21 6.10	solar semi annual	Long term Compound Compound

Harmonic method of classifying tides at a location

The tidal constituents (M2,S2,K1 & O1) can also be used to describe the type of tide (ie semidiurnal, diurnal, or mixed).

Tidal Form Number (TFN)=(K1+O1)/(M2+S2)


TFN < 0.25 : tides are semidiurnal.

TFN between 0.25 and 1.5: mixed mainly semidiurnal

TFN between 1.5 and 3.0: mixed mainly diurnal

TFN > 3,0, tides are diurnal

This requires us to do the tidal analysis!!

The declination angle (of sun or moon) and the proximity (of sun or moon) give rise to the various frequencies and magnitudes, known as the "tidal species". (easily done in TASK – 2000 software)

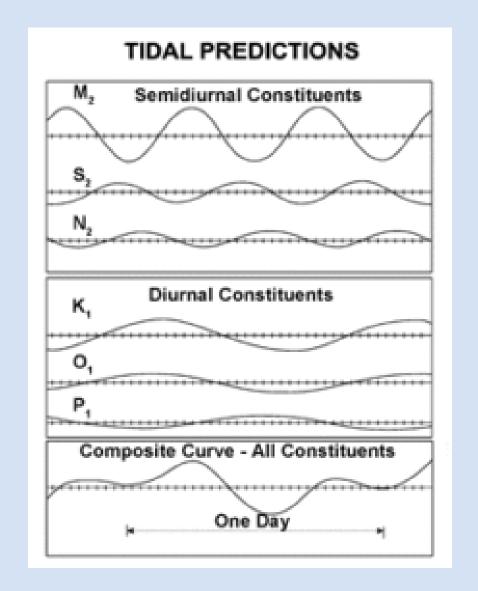
Sum

of

individual

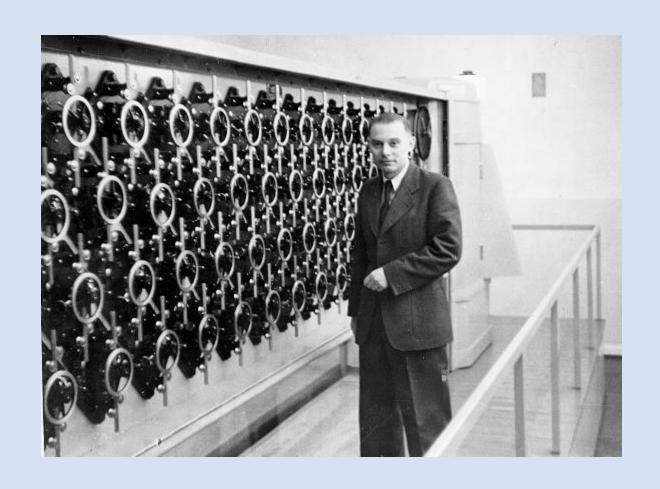
tidal

components

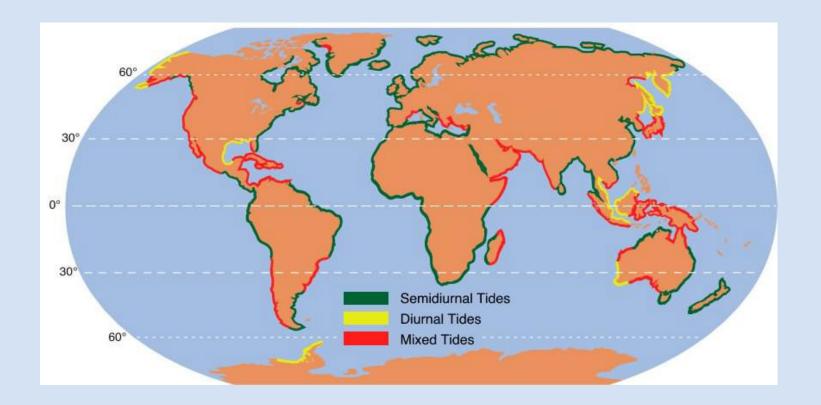

gives

the

resultant


predicted

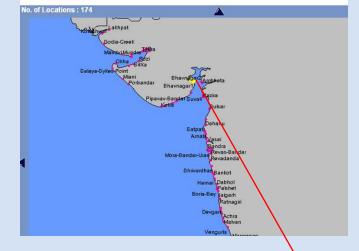
sea level



(up to 115 components in TASK 2000 software)

Just a few minutes in a modern computer....

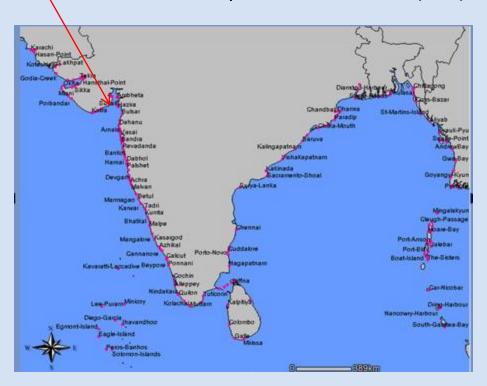
In the past!61-Component Tide-Predicting MachineGermany, about 1950.

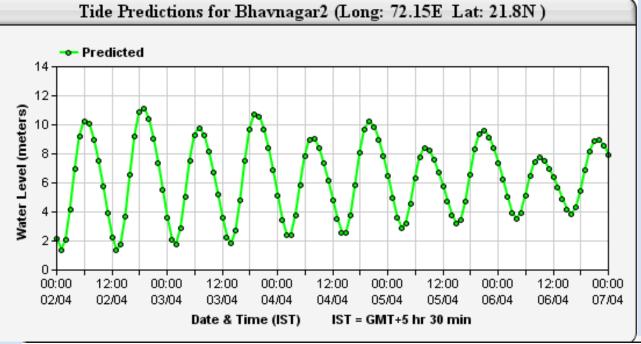

The same tidal forcing has different results depending on many factors, including coast orientation, continental shelf margin, water body dimensions.

Diurnal tides: mainly experienced in the Pacific Ocean.

Semi-Diurnal mainly experienced in the Atlantic Ocean.

Mixed: experienced in the Indian Ocean, Gulf of Mexico, and Australia.

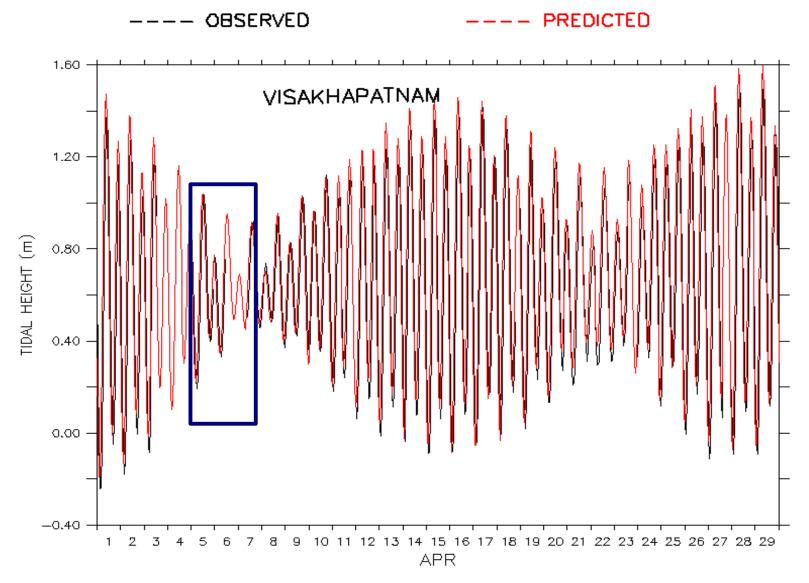

The Indian situation and Peculiarities!



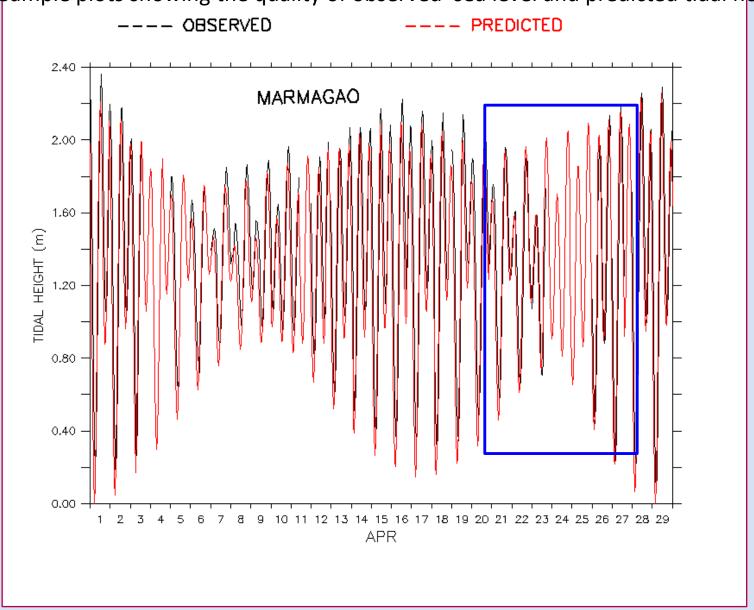
BHAVNAGAR

Approx. 10 metres tidal range

INCOIS Tidal prediction stations (178)

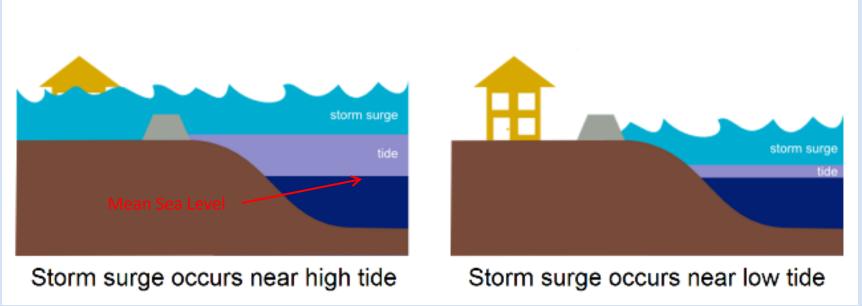


High Tide		Low Tide		
Time (IST)	Level (m)	Time (IST)	Level(m)	
02-04-2014 06:18 AM	10.34	02-04-2014-01:03 AM	1.34	
02-04-2014 06:43 PM	11.17	02-04-2014 01:13 PM	1.29	
03-04-2014 06:56 AM	9.80	03-04-2014 01:45 AM	1.70	
03-04-2014 07:22 PM	10.79	03-04-2014 01:52 PM	1.79	
04-04-2014 07:34 AM	9.15	04-04-2014-02:28 AM	2.23	
04-04-2014-08:01 PM	10.25	04-04-2014 02:31 PM	2.43	
05-04-2014 08:14 AM	8.45	05-04-2014 03:13 AM	2.86	
05-04-2014 08:45 PM	9.62	05-04-2014 03:12 PM	3.15	
06-04-2014 09:00 AM	7.77	06-04-2014 04:01 AM	3.51	
06-04-2014 09:36 PM	8.98	06-04-2014 03:57 PM	3.86	


Five day predictions (time series as well as high and low tide timings)

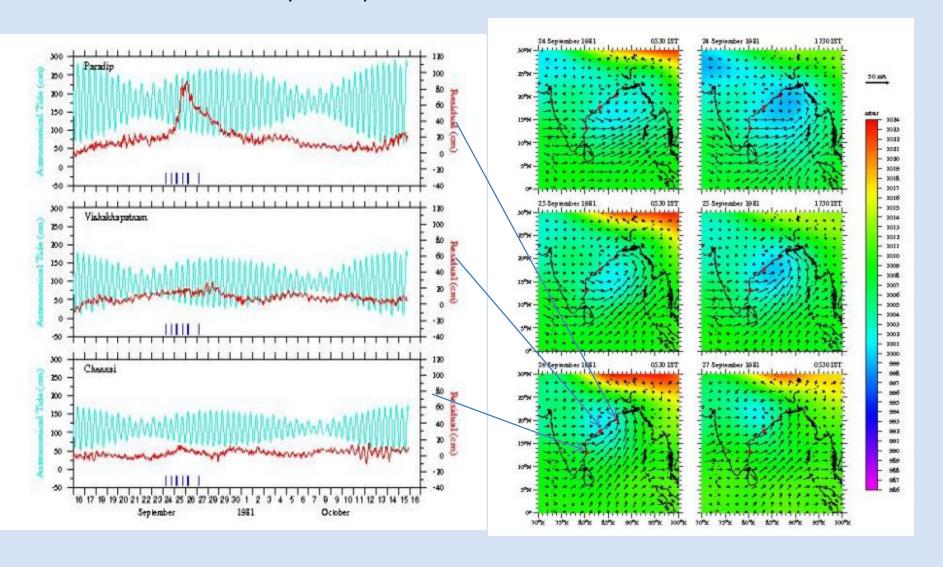

Validations!

Sample plots showing the quality of observed sea level and predicted tidal heights.....


Sample plots showing the quality of observed sea level and predicted tidal heights.....

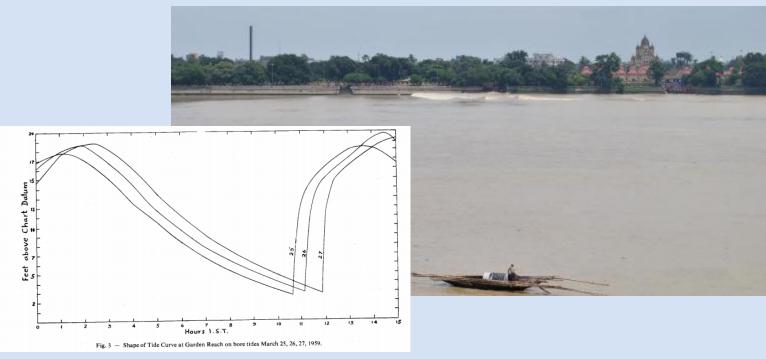
High Correlation between Visakhapatnam and Paradip (600 km) NON-TIDAL sea level

Why tide is important for Storm Surge studies!



Storm surge is the change in sea level caused by storms.....

resulting from low pressure high winds


Flooding by "inverted barometer effect" and high winds, high waves and high rainfall and high tides compound the damages

Indian east coast is very much prone!

Unique phenomena: Tidal Bores (Hooghly River, Kolkotta)

TIDES IN HOOGHLY RIVER SHRI R. S. CHUGH M.A. a

а

A.M.I.S., India

Published online: 29 Dec 2009

Comparison between SOI and INCOIS dissemination of tide data

	Survey of India	INCOIS	
Dissemination mode	Indian Tide Tables	Internet/EDBs/e-mail	
Format	Tabular (H/L lists)	Time series plots, Tabular (H/L lists)	
Cost	Rs. 2600 for each volume		
Total Stations	76	178	
Indian Stations	30	136	
Other Stations	46	42	

INCOIS				
Country	Stations			
India	136			
Myanmar	12			
Sri Lanka	11			
Bangladesh	9			
Chagos	5			
Pakistan	4			
Maldives	1			
Total	178			

Provided to users absolutely free in their desired format and dissemination mode

Number of constituents	Number of stations
< 10	69
11 to 20	3
21 to 30	32
31 to 40	61
41 to 50	0
51 to 60	13
Total	178

When more harmonic constituents are used..... predictions are more accurate!

TASK, 2000

Permanent Service for Mean Sea Level and

Proudman Oceanographic Laboratory,
UK

software was used for the predictions

Comparison between SOI and INCOIS tabulated data

GALLE					
(Sri Lanka)		INCOIS	SOI	INCOIS	SOI
	PHASE	Time	Time	Height (m)	Height (m)
01/01/10	High	02:47	02:46	0.75	0.76
01/01/10	Low	08:59	09:12	0.17	0.16
01/01/10	High	15:13	15:10	0.63	0.64
01/01/10	Low	20:51	20:58	0.21	0.18

Akyab					
Myanmar		INCOIS	SOI	INCOIS	SOI
	PHASE	Time	Time	Height (m)	Height (m)
01/01/10	Low	04:00	04:02	0.04	0.02
01/01/10	High	09:54	10:00	1.99	2.06
01/01/10	Low	15:57	16:00	-0.07	-0.13
01/01/10	High	22:17	22:28	2.54	2.54

BEYPORE					
(Kerala)		INCOIS	SOI	INCOIS	SOI
	PHASE	Time	Time	Height (m)	Height (m)
20-07-10	High	07:39	07:40	1.14	1.15
20-07-10	Low	12:15	12:03	0.92	0.92
20-07-10	High	17:05	17:06	1.14	1.17

Thank you.....